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Abstract
At the basic level of collinear spin density functional theory, half metallic
ferromagnets represent a fundamentally different state of matter: for low-
energy physics the spin degree of freedom is absent, although the system
is spin polarized. This makes such systems highly attractive for spintronics
applications, but also introduces fundamental new phenomena such as a
superconducting state in which the concept of ‘spin-pairing’ never appears. A
fully relativistic theory introduces spin–orbit coupling and destroys the precise
aspect of half metallicity; does this make ‘half metals’ a half truth? Obviously
not in any real sense: spin–orbit coupling arises as a perturbative effect, and
although necessitating reconsideration from the formal viewpoint, leaves half
metallicity as a qualitatively distinct state. We provide a simple model that
suggests that in appropriate circumstances this qualitative distinction may even
survive strong spin–orbit coupling.

1. Background

Charge and spin transport in solids is due to valence electrons. If one abstracts from the other
dynamical degrees of freedom (motion and internal excitations of the lattice ions, the influence
of which in transport problems can be subsumed into relaxation times for electron motion) the
model to be considered is an interacting fermion system in a crystalline background. There
are several universality classes of the ground state and the low-lying excitation spectrum of
this model. They are distinguished by (i) a two-dimensional Fermi surface (FS) in three-
dimensional momentum space, (ii) Fermi lines instead, (iii) Fermi points, and (iv) a gapped
ground state separated from the excitations by an energy gap �. In the first three cases there are
gapless excitations with linear dispersion in the vicinity of the FS (figure 1). Class (i) consists
of metals, classes (ii) and (iii) comprise semi-metals and unconventional superconductors,
and class (iv) contains the semiconductors and the conventional superconductors. Of course,
superconductors are also distinct in another respect, they are Weyl–Bogoliubov rotated in the
charge-particle space from pure particle and hole excitations into mixed ones (the Bogoliubov–
Valatin transformation). While the universality classes (i), (iii) and (iv) are robust with respect
to changes in the interaction strength, (ii) is in general not [1].
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Figure 1. Dispersion relations of (semi-)metals of (a) class (i), (b) class (ii) and (c) class (iii). See
also the text.

For light elements up to nuclear charge Z ≈ 30 in particular, but often more generally,
spin–orbit coupling of the valence electrons can be treated as a weak perturbation and can
be neglected in qualitative and even semi-quantitative treatment. Then one is left with two
spin subsystems which are only coupled by a common chemical potential. (In practice, this
coupling comes from some residual spin–orbit interaction or from spin-flip scattering on the
other degrees of freedom.) It is only this latter model which allows one to speak of half
metallicity: one spin subsystem is a metal and the other is an insulator or semiconductor
(i.e. gapped) or a semi-metal (zero-gapped). This well characterized model system has a
number of characteristic properties, interesting as such and/or relevant to applications: namely,
absence of magnetic Pauli susceptibility and full spin polarization of conduction electrons, to
mention the two most basic ones. Adding more interactions and more degrees of freedom to
the model will change these characteristics into approximate properties of real materials, and
these changes can be estimated perturbatively.

2. Brief phenomenology of half metals

2.1. Most relevant material parameters

The most direct parameters of an ideal half metal are the excitation gaps in the various spin
channels, shown schematically in figure 2. In this figure, the density of states (DOS) of the
electron excitation spectrum is shown with the hole states shadowed. The spin-flip excitation
gaps are �↓↑ for a transition from minority to majority spin (increase of magnetization),
�↑↓ for a transition from majority to minority spin (decrease of magnetization) and the gap
�↓↓ = �↓↑ + �↑↓ for spin-diagonal excitations of minority-spin states. The majority-
spin-diagonal channel is metallic and hence gapless. Because of the spin-flip gaps, the Pauli
susceptibility would clearly be zero in this situation. These characteristics apply exactly only
at zero temperature; temperature fluctuations degrade true half metallicity [2, 3].

Accidentally, one of the spin-flip gaps, �↓↑ or �↑↓, may be zero, and the Pauli
susceptibility would be anisotropic, being zero for fields in one polarization direction and non-
zero (but possibly of higher order due to the zero minority-spin DOS) in the opposite field
direction. At least theoretically there also exists a possibility that all three of these gaps are zero,
while DOS↓ is still equal to zero and there is a Fermi point with conical dispersion (figure 1(c))
in the minority-spin band. In this case the higher than first order Pauli susceptibility is non-
zero for both directions of the field. Finally, complementary cases may exist where the role of
majority and minority spin is interchanged.
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Figure 2. Schematic spin-resolved DOS of the excitation spectra of a half metal with the spin-flip
gaps �↑↓ and �↓↑, and spin-conserving gap �↓↓ equal to their sum.

From a technological point of view, one strong interest in half metals arises from their
potential as a spin injector in spintronics [4–6]. To quantify their usefulness, a generalized
definition of the degree of spin polarization [7]

PX = 〈P↑ X P↑〉 − 〈P↓ X P↓〉
〈P↑ X P↑〉 + 〈P↓ X P↓〉 (1)

of the observable X becomes relevant, where P↑ is the projector on the up-spin sector of the
state space. The simplest case is X = DOS, which in the above simplified (but conventional)
considerations for a half metal leads to P = 1 (or 100%). In reality, due to neglected further
interactions, notably spin–orbit coupling ([8], and see below), this is never precisely the case.
Moreover, depending on whether the electron transport is metallic or a tunnelling process, the
quasi-particle DOS or the single-particle DOS, respectively, is relevant. Tunnelling processes
are due to wavefunction overlap, and hence the corresponding DOS contains the square of
the wavefunction renormalization constant (Z ). In metallic transport, on the other hand, one
quasi-particle carries an unrenormalized full quantum of charge due to the backflow in the
polarization cloud. Hence, the wavefunction renormalization constant does not enter as is the
case for the quasi-particle DOS. However, it is not simply the DOS itself which matters in
metallic transport because the velocity in the direction of transport is important. Depending on
whether it is diffusive or ballistic at the interface, X = DOS ·v2 or X = DOS ·v, respectively,
is the quantity that enters the conductivity, where v is the quasi-particle velocity on the FS.

2.2. Classes of half metals

The concept of a half metallic electronic structure is a straightforward one, but within this broad
specification of conduction in only one of the two spin channels there can be very interesting
and potentially important distinctions. On the simplest level one can readily realize that the
conducting channel can be either the majority-spin, or the minority-spin, channel. The other
simple distinction is that, among the various integer values of the spin moment M per cell that
may occur, the special case is M = 0, dubbed the half metallic antiferromagnet. This type of
material is discussed in more detail below.

Other aspects that arise are (1) the characteristics of conduction: itinerant, versus the
more complex (moderately or strongly) correlated case, and (2) the characteristics of the non-
conducting channel. There may be a simple band-like gap in the non-conducting channel, a
correlation-induced gap or a zero-gap (semi-metal). The variety of possibilities that can be
anticipated, and in several cases identified with some degree of confidence, have been tabulated
and discussed by Coey and collaborators [9, 10]. Transitions between these various cases can
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be effected in the laboratory, for example the transformation from half metal to semiconductor
via pressure [11] as the counterpart of a metal-to-semiconductor (or insulator) transition.

3. Spin density functional theory of half metallicity

Conventional non-relativistic spin density functional theory (SDFT) [16] is a many-body
approach to a model of interacting electrons with spin-independent interaction and a spin-
diagonal kinetic energy operator, in an external spin-independent potential and possibly an
external magnetic field which couples to the electron spin only and not to the orbital motion.
For systems containing light elements up to the 3d metals this is often a reasonable model.
In the absence of a magnetic field or in a homogeneous magnetic field the direction of which
is chosen as the spin-quantization direction, its ground state is an eigenstate of the total z-
component of the spin Sz = ∑N

i=1 si
z , or in case of degeneracy may be chosen to be such

a state. Hence it is spin-collinear, and half metallicity may be a rigorous issue. This is the
situation that was analysed in [12].

3.1. Formal issues

It is worth reviewing very briefly the formal state of the theory for the spin degree of freedom
in DFT.

• Hohenberg and Kohn [13] provided a proof for scalar potentials that there is a unique
mapping n → (v mod constant) from ground state particle densities n to potential classes
coinciding up to a constant.

• In their proof they assumed without specific mention (by saying that wavefunctions for
different potentials are obviously different) that only those potentials are considered whose
wavefunctions do not vanish on a domain of non-zero measure. Lieb [14] assigned a
functional space of such potentials.

• For the case of spin-dependent potentials, the simplest result to visualize is the following:
for collinear spin densities, there is a mapping {ns} → ({vs mod constant Cs}) [12], that is,
a non-zero constant magnetic field Bz = (C↑ − C↓)/μB may not affect the spin densities.
This specifies the case of a half metallic ferromagnet, and specific examples have been
discussed [15].

• For non-collinear spin densities nαβ , the existing analysis [12] allows the possibility that
the spin density is unchanged by certain inhomogeneous external fields. A case satisfying
the necessary criteria is hard to imagine on the microscopic (atomic) scale.

3.2. Consequences of half metallicity

Within this frame one solves separately Kohn–Sham equations for spin-up and spin-down
subsystems. Typically this is done by varying the spin imbalance to minimize the energy
(assuming some spin-equilibrium interaction, as noted above), which then gives the ground
state charge density, spin density and energy. One may also restrict the space to given electron
numbers N↑ and N↓. This ‘constrained spin density functional’ approach is commonly referred
to as a fixed spin moment calculation, with total spin magnetic moment given by (using the spin
g-factor gs = 2 neglecting tiny quantum electrodynamic radiation corrections)

M = μBohr(N↑ − N↓) (2)

with the Bohr magneton μBohr. The resulting difference in the chemical potentials, divided by
the Bohr magneton, is the applied homogeneous magnetic field corresponding to the solution;

4



J. Phys.: Condens. Matter 19 (2007) 315203 W E Pickett and H Eschrig

that is, one obtains B = B(M). In a normal metal one varies M by varying N↑ and N↓ to find
the spontaneous moment M(B = 0). This is given by the numbers N↑ and N↓ for which the
chemical potentials in the two Kohn–Sham equations are equal.

We consider the precise case of a stoichiometric compound, thus the number of valence
electrons is an integer. (Alloys with a non-integral mean number of valence electrons can be
handled approximately but rather accurately.) If one of the spin subsystems, the majority-spin
system say, has an energy gap at the chemical potential, then the corresponding number N↑
must be an integer corresponding to the number of filled bands; this leaves an integer also for the
opposite spin, and hence also for the difference, which is M/μBohr. The position of the chemical
potential at zero temperature within the gap has no effect on the ground state (wavefunction, or
density); an external homogeneous magnetic field is arbitrary within an interval corresponding
to the gap [12]. A change of B within that interval therefore does not change M : as a result, a
half metal with a non-zero gap has zero Pauli susceptibility, and this can be used (in principal,
at least) for experimental verification of half metallicity. This is not true for the special case
of an ideal half metal with a Fermi point in one spin channel. In that case B(M) is unique,
but the linear Pauli susceptibility still vanishes. Instead, M(B) has an inflection point with a
horizontal tangent.

The SDFT treatment of half metallicity suffers from the same gap problem as the DFT
for semiconductors. The difference between the external potential and the chemical potential
(chemical potentials for the spin subsystems), which is the functional derivative of the density
functional (spin density functional [16]) is not uniquely defined in the direction of the functional
space corresponding to a change of N (N↑, N↓). Euler’s equations can only be applied to the
variational problem under the constraint that these numbers are fixed. Thus this condition is not
resolved by the approach of [17]. One can resort, fortunately, to fixed moment calculations in
the case of half metals, where the derivative of the spin density functional (the spin-dependent
XC potential) makes a jump across the integer number of M/μBohr [12]. Local-density
approximations cannot make such a jump and hence fail in principle to reproduce those gaps
correctly, and also the corresponding intervals of chemical potential or B-field. Nevertheless,
local spin density functional (LSDA) in most cases correctly obtains the half metallic state
(with a reduced gap) as in most cases it also correctly obtains the semiconducting state (with
a reduced gap). LSDA + U is sometimes tried instead; but this should be considered with
reservations in case of itinerant systems.

4. Half metallic antiferromagnets

The peculiarly named half metallic antiferromagnets are the subset of stoichiometric half
metals in which the integer moment per cell corresponds to the integer zero. In truth, they
are half metallic ferrimagnets in which the sum of the down spins exactly cancels the sum of
the up spins, and are better characterized as compensated half metals (CHM), a simplification
of a designation introduced by the Mainz group [18]. Certainly there is no antiferromagnetic
symmetry. Still, the concept of a material with dense magnetic moments and the symmetry of
a ferromagnet, yet with no macroscopic field, is an intriguing one with potentially profound
implications. Most obviously, the current would be 100% spin-polarized without the materials
displaying any macroscopic magnetic field. Such a property would provide the functionality of
a HM ferromagnet but enable different characteristics in devices (being impervious to magnetic
fields in the environment, for example).

The CHM provides the platform for a novel state of matter, called the single-spin
superconductor (SSS) [19]. There are now a few examples of superconductivity coexisting
with robust ferromagnetism, with UGe2 (under pressure) being the clearest example. The
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character of the allowed pairing states in such systems has been characterized, the interesting
question being how the spin state of the Cooper pair (necessarily spin-parallel pairing) couples
with the orbital state to produce order parameters with exotic flavours [20]. On the Ginzburg–
Landau level of description of currents, it is necessary that the superconducting phase appears in
concert with an accompanying flux lattice, to accommodate the intrinsic magnetic field present
in the ferromagnet. The SSS system is distinct: the spin degree of freedom is simply missing
from consideration (much below the magnetic ordering temperature, at least). The result is the
superconducting pairing of spinless fermions, with allowed order-parameter symmetries having
been worked out for common crystal structures [21].

Thus from both the pure science aspect and the standpoint of applications, this CHM
possibility presents a novel system, deserving designation as a ‘new state of matter’. The CHM
concept was introduced by van Leuken et al, who provided a structurally and electronically
complex example [22]. It was pointed out not long after that the phenomenon of anti-alignment
of moments with identical values of spin (spin 3/2, say, corresponding to 3μB on an ion)
should not be so unlikely in common crystal structures [24]. The double perovskite structure
(elpasolite, to solid state chemists) A2XZO6 (A = cation; X, Z are magnetic ions) is a good
place to start, since there are a great many members of this class already reported by Anderson
et al [23], including several with two transition metal ions (which are likely to provide magnetic
moments). The perovskite structure should also be favoured for CHMs because of the tendency
for antiferromagnetic superexchange in the structure.

An early suggestion for a favourable compound [24], calculated to have compensating
S = 1 spins on the transition metal ions, was La2MnVO6. Local spin density calculations
led to anti-aligned Mn3+ (d4) and V3+ (d2) ions, with Mn in the low-spin state. Efforts to
synthesize this compound have not produced a well ordered material [25], so the suggestion has
not really been definitively tested; achieving well ordered compounds is one of the challenges
in the double perovskite class of materials. The indications are indeed that both Mn and V are
trivalent, and that exchange coupling is strongly antiferromagnetic in sign. The Curie–Weiss
moment suggests that Mn assumes the high-spin state S = 2 rather than S = 1, destroying the
possibility of being a CHM and instead resulting in a ferrimagnet.

Subsequently the possibility of a CHM state in the double perovskite system LaAVRuO6

was proposed [26]. Perhaps motivated by the observation that LSDA predicted a low-spin Mn3+
ion in La2MnVO6 whereas magnetic data point to a high-spin ion, they applied the correlated
band theory LDA + U method. In such a 3d–4d pair system, site ordering of the ions may be
promoted due to size difference. They concluded that this system provides strong candidates
for CHM materials. We are not aware of experimental attempts to test these predictions. The
theoretical search for CHMs was extended to the system LaAVMoO6, A = Ca, Sr, Ba [27].
Powder samples of some members of this system had been synthesized and characterized
earlier [28]. Although the desired AF coupling was obtained and several examples of HM
character (or nearly so) resulted, they obtained ferrimagnetic states rather than CHM states.

The latest promising possibility is in the Heusler system, with the compound Mn3Ga
calculated by the Mainz group [18] to be very close to a CHM. The Mn moment of 3.03 μB

on the Y site of the X2YZ structure is compensated by the two oppositely directed moments of
−1.54 μB (and a small induced Ga moment). The uppermost part of the minority valence
band at � (the band at the lower side of the gap) crosses the Fermi level by ∼0.1 eV in
LDA calculations, so the polarization at EF is not quite 100%. Because the bandgap is
underestimated in LDA (the amount is not known), this system holds the possibility of being a
CHM. The ordered alloy Mn2(Mn0.5V0.5)Si is also calculated to be a CHM [18].

In real materials, with their additional degrees of freedom, other intriguing scenarios can
be envisioned. When f-elements are involved, large orbital moments may coexist with spin
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Figure 3. Spin-resolved density of states (DOS) of a spin split t2g complex: (a) without l ·s coupling
and (b) weak l ·s coupling, splittings are of order ζ/�. (c) Spectrum with strong l ·s coupling ζ ≡ �

(see text for further explanation).

moments and may cancel the spin moment to produce an ‘antiferromagnet’ result for the total
moment, which again could be half metallic (conducting for one direction of the spin only) and
could have the advantages of a CHM.

5. Effect of spin–orbit coupling

Spin–orbit coupling (l ·s coupling) mixes the ↑ and ↓ components of the Bloch states and hence
impairs half metallicity. If the spin–orbit coupling strength ζ is weak, the spin hybridization is
expected to be proportional to ζ , and the degree of spin polarization is reduced according to the
DOS ratio at the Fermi level DOS↑/DOS↓ ∼ ζ 2. In order to quantify the effect in more detail,
we consider the model pictured in figure 3(a).

Assume a narrow degenerate t2g complex of d-states close to the Fermi level and spin
polarized such that the majority (↑) band is filled and the minority (↓) band holds less than one
electron per magnetic atom, i.e. a d3+ε ion with 0 < ε < 1. The eg bands are assumed to be so
far away in energy (for instance by covalency splitting with six oxygen neighbours) that they
can be removed from consideration. The spin–orbit Hamiltonian is

Hl·s = ζ

2
(2lzsz + l+s− + l−s+). (3)

The t2g complex is built of real tesseral harmonics

|xy〉 = |+2〉 − |−2〉
i
√

2
,

|xz〉 = |+1〉 + |−1〉√
2

,

|yz〉 = |+1〉 − |−1〉
i
√

2
,

(4)

where |m〉 are lz eigenstates with quantum number m of l = 2. It is easily found that the 6 × 6
Hamiltonian matrix of the spin-dependent t2g states splits into two 3 × 3 blocks, one of which
is

Hl·s = ( |xy↑〉 |xz↓〉 |yz↓〉 )

⎛

⎜
⎝

−� −i ζ

2
ζ

2

i ζ

2 0 −i ζ

2
ζ

2 i ζ

2 0

⎞

⎟
⎠

( 〈xy↑|
〈xz↓|
〈yz↓|

)

. (5)
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This subspace involves one of the three majority-spin states and two of the three minority-spin
states. The remaining states form the other 3 × 3 block which is obtained simply by a sign
change of the matrix elements and then a down shift of the diagonal by �.

It is instructive to note that in the angular momentum basis of lz = ±1 minority states the
Hamiltonian matrix becomes

H̃l·s = ( |xy↑〉 |+1↓〉 |−1↓〉 )

⎛

⎜
⎝

−� 0 ζ√
2

0 ζ

2 0
ζ√
2

0 − ζ

2

⎞

⎟
⎠

( 〈xy↑|
〈+1↓|
〈−1↓|

)

. (6)

In this subspace the lz = +1 state decouples from the spin–orbit problem. Since the common
interpretation is in terms of real t2g states, we return to that basis to follow the consequences.

Consider first the case ζ � � of weak spin–orbit coupling compared to the exchange
splitting. To leading order in ζ/�, the eigenvalues are easily obtained to be ε = ±ζ/2 and
ε = −�. The corresponding eigenstates have the form

φ = |xy↑〉 a + |xz↓〉 bx + |yz↓〉 by (7)

with the eigenstate amplitudes {a, bx, by} given, to within a normalization constant, by

φ+ζ/2 : {0, 1, i}
φ−ζ/2 :

{
ζ

�
, i, 1

}

,

φ−� :
{

1,
ζ

2�
i,

ζ

2�

}

.

(8)

These states have 〈lz〉 = +1,−1 + (ζ/2�)2, −(ζ/2�)2, respectively.
The two minority-spin states split (equation (6)), and the lower one (like the majority-spin

state) gets spin-mixed by a fraction of order ζ/�. In the same way, the other block yields
a splitting of the two majority-spin states and a spin hybridization of the two upper states in
energy. The result is summarized in figure 3(b). For our assumed filling, the Fermi level is
pinned in the lowest minority-spin state, and the DOS ratio is

DOS↑
DOS↓

= ζ 2

2�2
(9)

which is the anticipated result for this case. However, the result that in the case of less than one
hole in the minority bands, and hence a pinning of the Fermi level in the uppermost state, the
impairing of half metallicity is of higher than second order in the ratio ζ/� is not anticipated.

Next, the particular case ζ = � is considered as an example of strong spin–orbit coupling.
Now, the eigenvalues of (5) are ε = �/2, ε = 0 and ε = −3�/2. The corresponding states
(up to a normalization constant) are

φ�/2 : {0, 1, i}
φ0 : {1, i, 1}
φ−3�/2 :

{

1,− i

2
,−1

2

} (10)

with 〈lz〉 = +1,−1/2 and −1/2, respectively. Again, the uppermost state has pure spin ↓
and orbital +1 character, while now the two lower ones are strongly spin-entwined. However,
now the other 3 × 3 Hamiltonian block yields strongly hybridized upper states and the lowest
non-hybridized, where the highest and lowest in energy of all six states is doubly degenerate
(figure 3(c)). For the DOS ratio at Fermi level one has

DOS↑
DOS↓

= 1

2
(11)
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in our case of less than one electron in the minority states, and half this value (due to the
degeneracy with a non-hybridized state) in the case of less than one hole. In any case half
metallicity is more or less completely destroyed.

Unexpectedly, even in this case of strong spin–orbit coupling, there is for certain
geometries a band which does not spin hybridize. Moreover (or rather, as a consequence) there
is an associated large contribution to the orbital moment. Considering the above degeneracy
of states as a particular model feature, one consequence is that strong spin–orbit coupling even
with large orbital moments does not necessarily destroy half metallicity, so materials with
heavy elements as components are not completely ruled out as candidates for half metallicity,
as simple heuristic arguments (‘common sense’) would suggest. For every structure and band
filling a relativistic band calculation is needed to decide this question.

The influence of l · s coupling in the case of a half metal with a Fermi point and a conically
dispersed band in its neighbourhood is similar. (Slightly non-stoichiometric Ag2Te could be a
semi-metallic non-polarized case with a Fermi point [29].) This situation needs the degeneracy
of a band crossing at the Fermi level. It is a general result that l · s coupling removes symmetry
derived band degeneracies. If the (non-relativistic) conical dispersion around a Fermi point is
symmetry related, l · s coupling will open a gap and thus remove the Fermi point completely.
However, again bands of different symmetry group representations may cross at arbitrary points
in momentum space, and if such a crossing of a majority- and a minority-spin band happens at
the Fermi level it probably survives l · s coupling.

Orbital magnetic polarization (orbital moments) is another issue closely related to l · s
coupling. Magnetic polarization in a solid is normally triggered by the spin dependence of
exchange interaction. Its presence then induces an orbital polarization which otherwise would
be quenched by covalency, and is further enhanced by exchange and correlation effects (second
Hund’s rule coupling) [30]. The underlying mechanism is the shifting of spectral weight
across the Fermi level, and in the case of half metallicity shifting across the half metal gap
without necessarily changing much the degree of spin polarization at the Fermi level. A related
consequence is that in the presence of l ·s coupling the occupation of the spin states is no longer
an integer, so the Pauli susceptibility no longer vanishes. A thorough SDFT analysis along the
above lines of Heusler alloys has been provided recently [31].

6. Summary

It has become accepted that the half metallic ferromagnetic state is a fundamentally different
state from that of a normal ferromagnet. Here we have looked briefly at this question from a
few different viewpoints. First, the formal underpinnings of the spin density functional theory
of half metals were outlined. Then, the relativistic effect of spin–orbit coupling was considered
(in principle it destroys half metallicity, in practice it is a minor effect for the smaller magnetic
atoms (Z ∼ 30 or less)). A model treatment was given to show that it is possible even for
heavier atoms, with an appropriate structure and band filling, that a half metal (or near) state
may survive, and may even have significant orbital moment.

Thirdly, we revisited the possibility of a half metal with zero net moment, the so-called
half metallic antiferromagnet, with the better terminology being a compensated half metal.
Although there are several known or suspected half metals with various values of (integer)
moment, there is as yet no good prospect of a compensated half metal with M = 0. The
compound Mn2Ga predicted by the Mainz group [18], while not yet synthesized, is an excellent
example of the possibilities that exist even in very common crystal structures. Given the
substantial number of ferrimagnets in intermetallic compounds and oxides (such as the double
perovskites), there is good reason to anticipate that half metallic antiferromagnets lurk within
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known systems waiting to be discovered. A new kind of superconductivity is possible in such
systems, somewhat analogous to superconductivity in a ferromagnet but with the minority
bands having ‘evaporated’ taking their own superconducting gap with them.
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